Data Science Opleiding

Wil jij expert worden in data science? Dan biedt onze data science opleiding een compleet programma. We starten bij de basis en eindigen met het zelf maken van machine learning modellen. Na deze opleiding ben je in staat om zelfstandig te opereren als data scientist binnen jouw organisatie.

De data science opleiding biedt een combinatie van theorie en praktijk. Enerzijds diepen we het vakgebied data science uit en anderzijds ga je direct zelf aan de slag met het schrijven van scripts in Python. Zo breid je je theoretische kennis uit en bouw je al tijdens de opleiding nieuwe - direct in de praktijk toepasbare - vaardigheden op.

Tijdens deze opleiding werken we met de meestgebruikte data science programmeertaal, namelijk Python. Voorkennis van programmeren is geen vereiste.

Leerdoelen data science opleiding

data science opleiding leerdoel python

Complete introductie in data science

De wereld van data science kan in eerste instantie intimiderend overkomen. In de eerste twee dagen maken we je vertrouwd met de mogelijkheden van data science. We leggen alle basisvaardigheden voor data scientists uit en oefenen in een eigen online omgeving. Je leert bijvoorbeeld om analyses te automatiseren en geavanceerde visualisaties te maken. Dit geeft je al voldoende basis om zelfstandig aan de slag te gaan in de praktijk.

data science opleiding machine learning leerdoel

Verdiepende kennis van machine learning

Waar we tijdens de eerste twee dagen een solide basis leggen, gaan de laatste twee dagen over verdiepende onderwerpen. Je leert over machine learning en het in productie brengen en monitoren van jouw machine learning modellen. Dit geeft een compleet en pragmatisch beeld van het vakgebied Data Science. Na de opleiding ben je in staat om zelf voorspellende algoritmes te schrijven voor jouw organisatie.

Is deze data science opleiding wat voor mij?

Deze training is iets voor jou als:

  • Je meer inzichten wilt halen uit beschikbare data binnen jouw werkomgeving.
  • Je een beroep hebt waar veel databronnen en -analyses bij komen kijken en je je kennis wilt verbreden. Bijvoorbeeld in finance, logistiek, marketing, ICT, of HR.

Benodigde voorkennis

Er is geen specifieke voorkennis vereist, maar het is handig als je basiskennis van wiskunde hebt en ervaring hebt met bijvoorbeeld Excel files, tekstbestanden (csv) of databases. Het is een opleiding op uitdagend niveau en wij raden minimaal een afgeronde HBO opleiding aan.

Inhoud Data Science Opleiding

Dag 1: Data Science basisvaardigheden

Data science introductie

Je zult op dag één kennismaken met data science. Hoe is het vakgebied ontstaan en welke vaardigheden heeft een data scientist? We introduceren waarom Python dé programmeertaal is die centraal staat voor iedere data scientist. Je leert over de meestgebruikte 'data science packages'. Je zult direct tijdens deze eerste ochtend een eigen Python script schrijven en uitvoeren in onze eigen online omgeving.

Gedurende de eerste dag maak je je enkele basisvaardigheden eigen die essentieel zijn om te beheersen als data scientist. Deze vaardigheden gebruik je tevens de rest van de opleiding.

Basisvaardigheid #1: variabelen & datatypes

Wie werkt met data moet de data op kunnen slaan in variabelen. Zo kun je bijvoorbeeld getallen, reeksen, of tekst opslaan. Je leert over welke datatypes relevant zijn voor data scientists. Je zult ervaren hoe verschillende datatypes tot andere mogelijkheden leiden.

Basisvaardigheid #2: Lists

Bij data science werkzaamheden kom je vaak enorme dataverzamelingen tegen. Een reeks van datapunten kan worden opgeslagen in een 'list'. We oefenen met lists en bespreken waar je lists in de dagelijkse praktijk voor gebruikt.

Basisvaardigheid #3: Dictionaries

Een dictionary is letterlijk een soort woordenboek. Je kunt aan de hand van de 'sleutels' in de dictionary bepaalde informatie opzoeken. Zo kun je bijvoorbeeld een dictionary maken waarin je plaatsnamen koppelt aan het aantal inwoners van die plaats. Als data scientist maak je dagelijks gebruik van dictionaries. We bespreken de toepassingen en oefenen met deze basisvaardigheid.

Basisvaardigheid #4: Logica, methoden en functies voor data science

In iedere data-analyse pas je logica toe op data. Python biedt een variatie aan mogelijkheden. We bespreken wanneer je logica toepast en oefenen ermee om het goed in de vingers te krijgen. Daarnaast leer je hoe je herhaaldelijke activiteiten in analyses versimpelt met het gebruik van functies. Je past zelf functies, methoden, en logica toe om de eerste ingewikkeldere inzichten uit data te halen.

Hiermee hebben we op de eerste dag een mooie basis gelegd waar we op door zullen bouwen op de volgende dagen.

Dag 2: Meestgebruikte tools door data scientists

Numpy: efficiënt met veel data werken

Als je wel eens met een grote dataset in Excel hebt gewerkt herken je misschien wel dat je al snel tegen de grenzen van het programma aanloopt. Met Python kun je met veel grotere datasets werken op een efficiëntere manier. NumPy is een Python package dat je in staat stelt om bewerkingen te doen op grote datasets.

Het NumPy package wordt bovendien veel gebruikt door andere data science packages. Het is daarom een onmisbaar onderdeel van iedere data science opleiding. We bespreken hoe je NumPy gebruikt en oefenen met een praktijkcasus.

Pandas: de belangrijkste data science tool

Pandas is veruit de meestgebruikte tool door data scientists. Je kunt met Pandas eigenlijk alles wat je in Excel kunt, plus een hele hoop meer. Zo kun je data importeren vanuit verschillende bronnen (denk aan Excel-bestanden, maar ook CSVs, APIs, of databases).

Vervolgens kun je deze data verkennen en bewerken op uiteenlopende manieren. Het is mogelijk om datasets te combineren, transformeren, groeperen, of filteren. Je kunt het zo gek niet bedenken of het is mogelijk in Pandas. We zullen uitgebreid stilstaan bij enkele praktijkoefeningen zodat je Pandas goed onder de knie krijgt.

Op dit punt in de opleiding ben je al in staat om uit data inzichten te halen die je onmogelijk met Excel had kunnen realiseren.

Matplotlib: mooie figuren plotten

Niet alleen het vergaren van nieuwe inzichten behoort tot de taken van een data scientist. Ook het overbrengen van nieuwe inzichten is een belangrijk onderdeel. En omdat niet iedereen even goed is met data, brengen veel data scientists inzichten over via grafieken/ figuren.

Met het Python package matplotlib leer je honderden verschillende soorten visualisaties te maken. Onderstaande afbeelding geeft een willekeurige indruk van de variatie in mogelijkheden.

data science opleiding visualisaties

Je leert matplotlib toepassen in een praktijkcasus waarin je complexe, gepersonaliseerde visualisaties van de dataset maakt.

Eindopdracht

Tijdens een eindopdracht pas je alles wat je de eerste twee dagen hebt geleerd toe in één vraagstuk. Je zult diverse gegevensbronnen met elkaar verbinden, logica toepassen, functies schrijven, en werken in de packages NumPy, Pandas, en Matplotlib. Je haalt interessante inzichten uit de data en visualiseert deze inzichten zodat ook andere begrijpen wat je hebt gevonden.

Dag 3: Machine learning basis

Machine learning introductie

Machine learning is nu populairder dan ooit tevoren. We leggen uit hoe het vakgebied is ontstaan en hoe het zich heeft ontwikkeld. We schetsen een inzichtelijk beeld van het totale palet aan mogelijkheden. Zo bespreken we bijvoorbeeld wat supervised learning en unsupervised learning inhouden. Daarnaast gaan we in op wanneer je welk algoritme toepast.

Je leert welke stappen een data scientist doorloopt tijdens het bouwen van een machine learning model. Dit stappenplan zal tijdens de praktijkcases op dag 3 en 4 van de data science opleiding steeds gevolgd worden. Zo ontwikkel je gewenning met de stappen en wordt het jouw standaard werkwijze.

Classificatie, de theorie

Een classificatie algoritme kan voorspellen of een waarneming tot een bepaalde categorie of groep behoort. E-mails worden bijvoorbeeld beoordeelt door een classificatiemodel die berichten verdeelt in "spam" en "geen spam". We duiken in de onderliggende statistiek zodat je begrijpt wat er gebeurt in classificatiealgoritmes. We tonen diverse praktijkvoorbeelden en toepassingen. Daarnaast leer je welk Python package je voor dit type vraagstukken kunt gebruiken.

Classificatie, een praktijkcase

Gedurende de classificatie praktijkcase bouw je je eerste machine learning model zelf op. Dankzij de vaardigheden die je op dag 1 en 2 van de opleiding hebt opgedaan kun je een dataset importeren en verkennen. Zo maak je grafieken om verbanden in de data bloot te leggen die van belang zijn voor jouw machine learning model.

We gaan in op de mogelijkheden die je hebt als datasets niet compleet (missing values) of vervuild zijn. Je schrijft je eigen machine learning model, traint het model met een deel van je data. Vervolgens valideer je de kracht van het model door het voorspellingen te laten maken op nieuwe data.

Regressie, de theorie

Een regressie algoritme stelt je in staat om numerieke waarden te voorspellen. Denk hierbij bijvoorbeeld aan een voorspelling voor de levensverwachting op basis van iemand levensstijl. We diepen de statistiek en wiskunde achter regressieanalyses uit zodat je begrijpt wat er gebeurt als je machine learning modellen met deze algoritmes toepast. We bespreken diverse voorbeelden uit de praktijk en we vertellen welke mogelijkheden er binnen Python zijn voor de toepassing van regressie.

Regressie, een praktijkcase

Net als bij classificatie werken we ook bij regressie samen aan een mooie case en je bouwt hierbij van begin af aan je eigen model op. Dit begint met een ruwe dataset die je in Python importeert.

Je onderzoekt door de toepassing van een verkennende data-analyse welke factoren een belangrijke voorspellende waarde zouden kunnen spelen in jouw regressiemodel. Daarnaast leer je hoe je niet-numerieke data toch kunt gebruiken in regressiemodellen. We oefenen met meerdere regressiealgoritmes als linear regression en gradient boosting en kijken naar wanneer je welk algoritme kiest.

Dag 4: modellen verbeteren en in gebruik nemen

Beoordelen en verbeteren van een model

Er zijn verschillende manieren om de prestatie van een model te meten. Je leert welke dit zijn en wanneer je wat toepast. We kijken hierbij bijvoorbeeld naar een ROC curve, AUC en een confusion matrix. Met deze kennis gaan we terug naar je eerder gemaakte modellen en laten we zien wat het effect is van diverse verbeteringen met behulp van feature engineering en hyperparameter tuning.

Een model in productie brengen

Een model voegt pas echt waarde toe als het consequent wordt toegepast op nieuwe data. Denk hierbij bijvoorbeeld aan een voorspelling die automatisch wordt gegenereerd wanneer er nieuwe data in een database verschijnt. Je leert vanuit een praktijkvoorbeeld hoe je hier invulling aan kunt geven. Nieuwe gegevens kunnen tot een nieuwe situatie leiden waardoor de prestaties van je model met de tijd achteruit gaan. Je leert hoe je hier rekening mee kunt houden en hoe je dit voorkomt.

Eindopdracht

In een uitdagende eindopdracht pas je je nieuwe vaardigheden toe op een interessant vraagstuk vanuit een dataset uit de praktijk. Je combineert gegevens vanuit meerdere databronnen, voegt extra informatie toe met feature engineering, en stelt een model naar eigen keuze op wat je iteratief verbetert tot het aan de verwachtingen voldoet.

Ervaringen met onze Data Science trainingen

maurice bij python cursus voor data science

Professioneel opgezet. Heldere verhaallijn gedurende de dag!

Maurice Wijshoff, Specialist Improvement & Innovation bij Ahold Delhaize
imbert tijdens python voor data science training

Inhoudelijk sterk en enthousiast team. Leerzaam! Kortom goede introductie en fijne locatie.

Imbert Myers, Database marketeer & Business analyst bij FNV
debra tijdens python cursus

Erg goed verzorgde cursus. Docenten zijn enthousiast en ik vond het een goede selectie van onderwerpen. Goede basis en kweekt nieuwsgierigheid naar wat nog meer mogelijk is.

Debra Marcella, Operator LPC TREx bij Ministerie van Defensie
olaf tijdens data science met python cursus

Tijd genomen voor de basis en niet tegen beter weten in alle materie er doorheen geduwd. Goed tempo!

Olaf van der Veen, co-founder bij Zero Foodwaste
Willem tijdens python training

Jullie zijn een enthousiast team!!

Willem Kuilman, Information Security Manager bij Fujitsu
hugo heuts tijdens training

Gezellige sfeer, sterke voorbeelden, kundige docenten, goede presentatie

Hugo Heuts

Download de brochure van de data science opleiding

Ben je geïnteresseerd maar wil je je niet direct inschrijven? Download dan de opleidingsbrochure en denk er rustig over na. Bij vragen kun je ons bereiken op 020 - 24 43 146. We helpen je graag verder.

python-cursus-voor-data-science-brochure


4 dagen€1800 ex. BTW
BCN Utrecht of in-company
- 10, 11, 17 & 18 dec - 1, 2, 8 & 9 maart 2021 - 22, 23, 29 & 30 april 2021
09:30 - 16:30